The Crystal and Molecular Structure of 3-(\boldsymbol{p}-Bromophenyl)phthalide

By V. Kalyani and M. Vijayan*
Department of Physics, Indian Institute of Science, Bangalore-12, India

(Received 22 April 1968 and in revised form 30 July 1968)

Abstract

The structure of 3 -(p-bromophenyl)phthalide, $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Br}$, has been solved by the heavy-atom and trial-and-error methods. The compound crystallizes in the orthorhombic space group Pbca with eight molecules in an elementary cell of dimensions $a=6 \cdot 17, b=26.95$ and $c=14.48 \AA$. The positional and thermal parameters were refined by the least-squares method to an R value of 0.066 for 549 observed reflexions. The plane of the phenyl ring is inclined at an angle of $97^{\circ} 30^{\prime}$ to the plane of the fused-ring system. This conformation of the molecule is substantially different from that in the corresponding meso compound. The lactone group in the molecule exhibits the expected structural characteristics. The molecular coordination number in this structure is 10 and the packing coefficient $0 \cdot 66$.

Introduction

3, 3^{\prime}-Diphenyl-bi-3-phthalidyl can exist in two isomeric forms, viz. the meso and the racemic forms. The isomers are formed in unequal proportions, the more abundant one being the meso form (Manohar, Kalyani, Bhat \& Kamath, 1966). Detailed X-ray analyses of the bromo and chloro derivatives of the more abundant isomer have already been carried out in this laboratory (Kalyani, Manohar \& Mani, 1967; Kalyani \& Vijayan, 1969). 3-Phenylphthalide (II) is obtained by replacing one half of the molecule of the unsubstituted isomer
(I) by a hydrogen atom. In other words, structurally, 3-phenylphthalide constitutes just one half of meso-3,3'-diphenyl-bi-3-phthalidyl. The X-ray structure analysis of the bromo derivative of the former was undertaken in order to study the changes brought about in the molecular geometry as a result of the joining together of the two halves in the meso form.

Experimental

3-Phenylphthalide was prepared by the reaction of an aqueous alcoholic solution of sodium borohydride

[^0]with o-benzoylbenzoic acid. The bromo and the chloro derivatives were prepared in a similar manner, using o-(p-bromobenzoyl)benzoic acid and o-(p-chlorobenzoyl)benzoic acid respectively instead of o-benzoylbenzoic acid. The crystals of the three compounds were kindly supplied by Dr K. M. Kamath and Professor M.V.Bhat of the Organic Chemistry Department of this Institute. The unsubstituted compound crystallized as transparent tabular plates and the two derivatives grew as thin, cylindrical, transparent needles. The space group and the unit-cell dimensions of the three compounds were determined from oscillation and Weissenberg photographs. The densities of the samples were measured by flotation in aqueous potassium iodide solutions. The crystal data for these compounds are given in Table 1. The closeness of the unit-cell dimensions of the bromo and the chloro derivatives indicated that they were isomorphous.

Intensity data for 3-(p-bromophenyl)phthalide were collected using $\mathrm{Cu} K \alpha$ radiation from a needle-like specimen of mean radius 0.0053 cm . The reciprocal levels $H k l$ for $H=0$ through 4 were recorded by the multiple-film equi-inclination Weissenberg method. An interesting feature observed in these photographs was the reduction in the intensities of reflexion spots with increasing Bragg angle. For $\sin ^{2} \theta>0.5$ only 22 reflexions were in the observable range in the entire three dimensional data. The diminution of intensity was more pronounced in layers with increasing h index. The $4 k l$ level contained only 37 observable reflexions although the total number of possible reflexions in that level was 379 . The 5 kl level was blank even after 40 hours of exposure and hence no attempt was made to record data from levels with $h>4$. Out of a total of 1983 possible independent reflexions recorded in the zero and four higher level photographs, only 549 were in the measurable range, the rest being too weak to be observed. The intensities were measured by visual comparison with time-exposure calibrated strips. They were corrected for the Lorentz-polarization factor and for the variation in spot shape in the upper level Weissenberg photographs (Phillips, 1954) using a program
devised by Nambudiri (Kannan, Vijayan \& Nambudiri, 1966). On account of the inappreciable value of μr ($\mu=50.21 \mathrm{~cm}^{-1}, r=0.0053 \mathrm{~cm}, \mu r=0.27$), absorption corrections were not considered necessary.

As the crystals were fine thin needles, it was not possible to cut them along the b or c axis to collect intensity data.

These procedures were repeated for recording, estimating and processing the intensities of the 0 kl reflexions from the isomorphous chloro derivative by use of a needle-like specimen of mean radius 0.013 cm . The rapid fall-off of intensities with high Bragg angle was observed in this case also, despite the fact that the radius of the crystal was more than twice that used to collect data from the bromo derivative.

Structure analysis

An examination of the tentative wire models of the structure and the distribution of symmetry elements in the unit cell suggested that efficient packing of molecules could be achieved only if the bromine atom, the phenyl ring and the five membered part of the fused ring system lay parallel to the b axis. The very high intensity of the low order reflexion 004 strengthened the above opinion.

As a first attempt at the solution of the structure a Patterson projection was computed with the $0 k l$ intensity data. The most striking feature of this map was the concentration of vector density in regions parallel to the b axis around $z=0$ and $z=\frac{1}{4}$. This feature could be explained on the basis of the anticipated molecular orientation described above. However, the position of the heavy atom could not be identified unambiguously from this synthesis. Hence, a bromine-sharpened Patterson map was computed and the y and z coordinates of the bromine atom were derived from it. The coordinates were further confirmed by a ' $(\Delta F)^{2}$ ' synthesis
(Frueh, 1953), constructed with the squares of the differences in the absolute values of the 0 kl structure factors from the bromo and the chloro derivatives.

For 41 out of 106 observed reflexions in the 0 kl zone, the contributions from the bromine atom were greater than half of the corresponding F_{o} values. An electron density projection was synthesized with these 41 coefficients. A trial model was proposed on the basis of the considerations mentioned earlier, which explained the features of the bromine-phased Fourier synthesis satisfactorily. The first set of structure factor calculations for this model yielded a residual index of $0 \cdot 510$. The y and z coordinates and the individual isotropic temperature factors were refined by iterative differenceFourier syntheses to $R=0.302$ for zonal data. It must, however, be mentioned that on account of the systematic absence of reflexions with odd values of k, the zonal data were simultaneously compatible with coordinate y, z and $\frac{1}{4}-y, z$.

A three-dimensional Patterson function was then synthesized. This diagram also consisted of elongated regions of vector density parallel to the a and b axes at $z=0, \frac{1}{4}$ and $\frac{1}{2}$. Another striking feature of this diagram was a pseudo mirror plane at $y=\frac{1}{4}$. An examination of the observed peaks on the basis of the expected brominebromine vectors revealed that they were compatible with two alternative positions of the bromine atom at $0.250,0.083,0.133$ and $0.250,0.167,0.133$. The persistence of this ambiguity between positions y and $\frac{1}{4}-y$ in three dimensions and the pseudo mirror plane in the Patterson diagram were consequences of the x coordinate of the bromine atom being $\frac{1}{4}$. Also, this value of the x coordinate implied that the brominephased three-dimensional Fourier synthesis would have a false mirror symmetry at $x=\frac{1}{4}$ over and above the ambiguity in the y coordinates.

However, a bromine-phased three-dimensional Fourier synthesis was computed using 227 out of $549 \mathrm{ob}-$

Table 1. Crystal data for3-phenylphthalide and its halo derivatives

	Unsubstituted, $\mathrm{C}_{14} \mathrm{H}_{10} \mathrm{O}_{2}$	Bromo derivative, $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Br}$	Chloro derivative, $\mathrm{C}_{14} \mathrm{H}_{9} \mathrm{O}_{2} \mathrm{Cl}$
Formula weight	$210 \cdot 22$	289.13	244.67
Unit-cell dimensions a	$6.08 \pm 0.02 \AA$	$6 \cdot 17 \pm 0.02 \AA$	$6.06 \pm 0.02 \AA$
b	$7 \cdot 58$	26.95	26.48
c	23.40	$14 \cdot 48$	$14 \cdot 47$
α	-	-	-
β	$92^{\circ} 20^{\prime} \pm 1^{\circ}$	-	-
γ	-	-	
Unit-cell volume U	$1077 \cdot 6 \AA^{3}$	$2407 \cdot 5 \AA^{3}$	$2322.0 \AA^{3}$
Space group	$P 2{ }_{1} / \mathrm{c}$	Pbca	Pbca
Number of molecules per unit cell	4	8	8
Calculated density D_{c}	$1.296{\mathrm{~g} . \mathrm{cm}^{-3}}$	$1.595 \mathrm{~g} . \mathrm{cm}^{-3}$	$1.400 \mathrm{~g} . \mathrm{cm}^{-3}$
Measured density D_{m}	$1 \cdot 277$	1.596	1-397
Linear absorption coefficient for			
$\mathrm{Cu} K \alpha$ radiation	$7.06 \mathrm{~cm}^{-1}$	$50.21 \mathrm{~cm}^{-1}$	$28.07 \mathrm{~cm}^{-1}$
Total number of electrons per unit cell	440	1152	1008
Melting point	$115^{\circ} \mathrm{C}$	$134{ }^{\circ} \mathrm{C}$	$125-6^{\circ} \mathrm{C}$

served reflexions. Because of the ambiguity and false symmetry mentioned earlier, it was found that four different models (which may be referred to as A, B, C and D) explained the features of the electron density map more or less satisfactorily. The already known orientation of the molecule in the 0 kl projection (with an ambiguity in the y coordinates) was helpful in proposing these models. It may be mentioned that among these models, C and D were obtained by substituting $\frac{1}{4}-y$ for y in models A and B respectively.

None of these models could be eliminated on the basis of packing considerations or the disagreements between the observed and calculated structure factors. However, models A and B gave almost the same set of signs whereas models C and D gave another set of signs. Hence, two Fourier syntheses were computed by use of these two sets of signs. The map computed with the signs given by models C and D had peaks of expected heights at geometrically feasible positions. The other map, though explainable on the basis of a molecular model, was much poorer in quality compared to the previous one. Hence, a trial model was proposed on the basis of the former and this model gave an R index of 0.397 for all the observed reflexions. In eight cycles of isotropic structure factor least-squares calculations this index was reduced to 0.156 . It may be mentioned that in the course of this refinement the orientation of the phenyl ring with respect to the phthalide ring changed substantially. At this stage anisotropic temperature factors were introduced for the bromine atom only, and in two more cycles of structure factor least-squares calculations the R index was reduced to $0 \cdot 121$. The foregoing calculations were done on the Elliott-803B computer at the Hindustan Aeronautics Limited, Bangalore, using a general blockdiagonal s.f.l.s. program devised by Dr G.A. Mair of the Royal Institution, London.

Further refinement of the structure was carried out on the CDC- 3600 computer installed at the Tata Institute of Fundamental Research, Bombay, using a fullmatrix least-squares program written by Busing, Martion \& Levy (1962), modified by W.C. Hamilton, J.A. Ibers \& C. K.Johnson and adapted for the CDC-3600 computer by S.Srikanta. In these calculations all the atoms were treated with anisotropic temperature factors and all the reflexions were given unit weights. The anisotropic temperature factors were of the form

$$
\exp \left[-\left(b_{11} h^{2}+b_{22} k^{2}+b_{33} l^{2}+2 b_{12} h k+2 b_{13} h l+2 b_{23} k l\right)\right] .
$$

The form factors used were those given by Cromer \& Waber (1965). In six anisotropic cycles the discrepancy index was reduced to 0.091 .

At this stage, it was found that 125 out of the 397 unobservable reflexions in the $\sin ^{2} \theta$ range of 0 to 0.5 had F_{c} 's greater than 0.6 of the corresponding minimum observable values. Hence, these reflexions were also included in further least-squares analysis. Their F_{o} values were assumed to be equal to $0 \cdot 6$ of the corresponding minimum observable values. The refinement
was terminated after four more s.f.l.s. cycles. The final R index for 549 observable reflexions was 0.066 . In the final cycle, the average and maximum shifts in positional parameters were 0.61σ and 1.33σ respectively. Comparable shifts to standard deviation ratios were also observed for thermal parameters. However, it may be mentioned that one thermal parameter, viz b_{13} of $\mathrm{C}(11)$, tended to increase unduly and hence it had to be fixed arbitrarily at 0.01015 to retain the thermal vibration-ellipsoid of $\mathbf{C}(11)$ as real.

Results

The final positional parameters of the atoms are given in Table 2. Components of the temperature factor tensors and the average B values defined as $\left(B_{1}+B_{2}+B_{3}\right) / 3$, where B_{1}, B_{2}, B_{3} correspond to principal axes of thermal vibration ellipsoids, are listed in Table 3. A list of observed and calculated structure factors is presented in Table 4. The unobservable reflexions used in the leastsquares refinement are also included in this list. Fig. 1 shows superimposed sections of the final three-dimensional electron-density map computed with the phases given by the final s.f. cycle.

Table 2. Final positional coordinates in fractional units

Standard deviations $\left(\times 10^{5}\right)$ are given in parentheses.

	x	y	z
Br	$0 \cdot 28038$ (38)	$0 \cdot 16532$ (6)	$0 \cdot 14559$ (13)
$\mathrm{O}(1)$	0.93097 (210)	$0 \cdot 44832$ (37)	$0 \cdot 12697$ (75)
$\mathrm{O}(2)$	$0 \cdot 63774$ (184)	$0 \cdot 40464$ (34)	$0 \cdot 16059$ (66)
C(1)	$0 \cdot 31847$ (298)	$0 \cdot 23570$ (46)	$0 \cdot 13196$ (79)
C(2)	$0 \cdot 15670$ (268)	$0 \cdot 26745$ (52)	$0 \cdot 16462$ (95)
C(3)	$0 \cdot 19656$ (246)	$0 \cdot 31805$ (51)	$0 \cdot 15945$ (84)
C(4)	0.39891 (271)	$0 \cdot 33535$ (50)	$0 \cdot 12257$ (85)
C(5)	$0 \cdot 56863$ (249)	$0 \cdot 30287$ (55)	0.09466 (98)
C(6)	$0 \cdot 52208$ (256)	$0 \cdot 25187$ (60)	$0 \cdot 09683$ (92)
C(7)	$0 \cdot 42455$ (246)	$0 \cdot 39278$ (54)	$0 \cdot 12186$ (107)
C(8)	$0 \cdot 44627$ (353)	$0 \cdot 41202$ (58)	$0 \cdot 02092$ (108)
C(9)	$0 \cdot 30003$ (271)	$0 \cdot 41277$ (50)	-0.05058 (131)
$\mathrm{C}(10)$	0.37384 (307)	$0 \cdot 43901$ (55)	-0.12608 (99)
C(11)	0.57906 (349)	$0 \cdot 46339$ (48)	-0.13330 (112)
C(12)	0.72262 (319)	$0 \cdot 46121$ (54)	-0.05802 (128)
C(13)	$0 \cdot 63573$ (352)	$0 \cdot 43790$ (58)	0.01585 (116)
C(14)	0.75427 (320)	$0 \cdot 43203$ (53)	$0 \cdot 10085$ (146)

The bond lengths and bond angles, their standard deviations and the principal axes of thermal vibration ellipsoids were calculated using a function and error program devised by Busing, Martin \& Levy (1964), modified by C.K.Johnson and adapted for the CDC3600 computer by S. Srikanta.

Discussion

The dimensions of the molecule are given in Fig. 2. Fig. 3 shows a perspective view of the molecule as seen normal to the plane of the fused ring system. The corresponding view of the meso compound is also shown in the same Figure for comparison.

Table 3. Anisotropic thermal parameters and the equivalent isotropic temperature factors $b_{i j} \times 10^{5}$

	b_{11}	b_{22}
Br	5785	220
$\mathrm{O}(1)$	2891	185
$\mathrm{O}(2)$	1832	193
$\mathrm{C}(1)$	5326	124
$\mathrm{C}(2)$	3974	133
$\mathrm{C}(3)$	2148	174
$\mathrm{C}(4)$	2583	155
$\mathrm{C}(5)$	1826	170
$\mathrm{C}(6)$	3238	168
$\mathrm{C}(7)$	682	234
$\mathrm{C}(8)$	2019	137
$\mathrm{C}(9)$	2249	131
$\mathrm{C}(10)$	4499	127
$\mathrm{C}(11)$	4914	116
$\mathrm{C}(12)$	5550	173
$\mathrm{C}(13)$	2829	166
$\mathrm{C}(14)$	745	160

b_{33}	b_{12}
885	-351
855	42
705	-273
104	-244
492	-28
354	10
373	-423
624	333
406	-100
763	-259
616	289
804	300
388	676
585	-165
510	881
412	149
1156	-248

b_{13}	b_{23}	$B\left(\AA^{2}\right)$
-60	18	$7 \cdot 54$
170	-15	$5 \cdot 65$
88	90	$4 \cdot 77$
-71	-26	$4 \cdot 20$
-57	-160	$4 \cdot 68$
-324	69	3.76
-220	112	3.85
-140	-23	4.32
202	145	$4 \cdot 40$
-52	48	$4 \cdot 75$
232	57	$4 \cdot 77$
250	30	$4 \cdot 66$
55	-63	$4 \cdot 60$
1015	79	$5 \cdot 25$
-201	-77	$5 \cdot 92$
224	74	4.20
155	-86	5.16

Fig.1. Final three-dimensional electron-density projection along the a axis. Contours are at intervals $1,2,3, \ldots$ e. \AA^{-3} for C and O and $1,3,5, \ldots e . \AA^{-3}$ for Br .

Fig. 2. Bond lengths (\AA) and bond angles (${ }^{\circ}$) in 3 -(p-bromophenyl)phthalide. The average standard deviation in bond lengths is $0.025 \AA$ and in bond angles $1 \cdot 4^{\circ}$.

The average $\mathrm{C}-\mathrm{C}$ distance and the mean $\mathrm{C}-\mathrm{C}-\mathrm{C}$ angle in the phenyl ring are $1.412 \AA$ and 119.9° respectively. The corresponding distance and angle in the six membered part of the phthalide ring are $1.384 \AA$ and $119 \cdot 6^{\circ}$. The root mean square displacements of the atoms in these two rings from the respective mean planes are 0.019 and $0.025 \AA$ respectively. The bromine atom lies $0.136 \AA$ away from the plane of the phenyl ring and the observed aromatic $\mathrm{C}-\mathrm{Br}$ distance of $1.921 \AA$ is slightly greater than the normally accepted value of $1.85 \AA$ (International Tables for X-ray Crystallography, 1962).

The lactone group in the molecule is constituted by the atoms $\mathrm{C}(7), \mathrm{C}(13), \mathrm{C}(14), \mathrm{O}(1)$ and $\mathrm{O}(2)$. The group is nearly planar. The root mean square displacement of the atoms from this plane is $0.031 \AA$. Also, the lactone group exhibits the important expected characteristics. The lengths of the asymmetric $\mathrm{C}-\mathrm{O}$ bonds are 1.465 and $1.345 \AA$, the shorter one being adjacent to the carbonyl group (Przybylska \& Ahmed, 1958; Gabe, 1962; Karle \& Karle, 1966). Again, the exocyclic angles around $\mathrm{C}(14)$ are asymmetric and both of them are greater than the internal angle. Of the two exocyclic angles, the one nearer to $\mathrm{O}(2)$ is less than the

Table 4. Observed and calculated structure factors ($\times 100$)
Calculations are for the contents of the unit cell.

 0

Table 4 (cont.)

other by $14 \cdot 1^{\circ}$. This also is a feature encountered in many γ-lactones (Fridrichsons \& Mathieson, 1962; Jeffrey, Rosenstein \& Vlasse, 1967; Kim, Jeffrey, Rosenstein \& Corfield, 1967). The C-O distance in the carbonyl group is normal.
The bond lengths and bond angles in the structure are comparable to those in the corresponding meso
compound (Kalyani, Manohar \& Mani, 1967). The most important and significant difference between the molecular geometries of the two compounds pertains to the orientation of the phenyl ring with respect to the phthalide ring (see Fig.3). In the present case, the plane of the phenyl ring is almost normal to that of the phthalide ring, the angle between the two planes

Fig.3. (a) A perspective view of the molecule as seen normal to the plane of the phthalide ring. (b) The corresponding view in meso-3,3'-di-(p-bromophenyl)-bi-3-phthalidyl.
being $97^{\circ} 30^{\prime}$. This angle is less than that found in the meso compound by $26^{\circ} 40^{\prime}$. In the former, the phenyl ring is sterically more free to rotate about the $\mathrm{C}(4)-$ $\mathrm{C}(7)$ single bond and the only major factor that determines its orientation is the steric hindrance with the atoms in the phthalide ring. In the structure, the phenyl carbons $\mathrm{C}(3)$ and $\mathrm{C}(5)$ are in steric contact with $\mathrm{O}(2)$ and $\mathrm{C}(8)$ in the phthalide ring [$\mathrm{C}(3)-\mathrm{O}(2)=3.586$, $\mathrm{C}(3)-\mathrm{C}(8)=3 \cdot 579, \quad \mathrm{C}(5)-\mathrm{O}(2)=2 \cdot 935, \quad \mathrm{C}(5)-\mathrm{C}(8)=$ $3 \cdot 218 \AA$]. Any change in this orientation would clearly be sterically unfavourable. However, in the meso compound, the observed conformation of the phenyl ring was the one that satisfied the steric requirements arising from the interactions with the fused ring system of the same half of the molecule, on the one hand, and those arising from the interactions with the other half of the molecule on the other, to the greatest possible extent. Also, in the present case, the $\mathrm{C}(7)-\mathrm{Br}$ vector makes an angle of 40.7° with the normal to the fused ring system. The corresponding angle in the meso compound is 33.7°. This again is a direct consequence of the steric interaction between the two halves of the molecule in the latter.

Molecular packing

Fig. 4 shows the arrangement of molecules in the structure viewed along the a axis. The intermolecular contacts correspond to normal van der Waal interactions and hence merit no special comment.

A survey of the intermolecular contact distances less than $4 \AA$ showed that each molecule in the structure is in contact with 10 neighbouring molecules and has a molecular coordination number of 10 . These neighbours include the molecules in the neighbouring unit
cells and also the symmetry related molecules in the same cell. According to Kitaigorodskii (1955), a molecular coordination number of 10 provides adequate close packing, though in most organic structures this number is 12 . The positions of the nine hydrogen atoms in the molecule were derived from geometrical considerations assuming a C-H distance of $1.08 \AA$. However, the inclusion of hydrogen atoms in the calculations did not reveal any new contact.

The space group Pbca does not correspond to the closest packed arrangement of asymmetric molecules. However, Kitaigorodskii lists this as a permissible space group for such molecules. The packing coefficient of the structure calculated from Kitaigorodskii's (1955) formula is 0.66 and is less than that (0.69) for the corresponding meso compound. This is understandable on the following grounds. The meso compound, with a molecular symmetry $\overline{1}$, crystallizes in the space group $P \overline{1}$. This space group corresponds to the closest packed arrangement of centrosymmetric molecules and hence the structure should have high packing efficiency. On the other hand, 3-(p-bromophenyl)phthalide crystallizes in a 'permissible' but not 'closest packed' space group and hence the packing coefficient of the structure is correspondingly low.

The authors are grateful to Professor R.S. Krishnan for his kind interest in the problem. They are indebted to Professor M.V.Bhat and Dr K.M. Kamath for providing the sample used in this investigation. Their thanks are due to Dr G.A. Mair of the Royal Institution, London, for making his s.f.l.s. program available to them, and also to Dr S.Srikanta of the Nuclear Physics Division, Bhabha Atomic Research Centre,

Fig.4. The structure as seen along the a axis. The big open circles represent bromine atoms and the small open and crossed circles represent carbon and oxygen atoms respectively.

Bombay, for allowing them to the use CDC-3600 versions of the ORFLS and ORFFE programs and for many discussions on computation.

References

Busing, W. R., Martin, K. O. \& Levy, H. A. (1962). ORFLS, A Fortran Crystallographic Least-Squares Program. USAEC Report ORNL-TM-305.
Busing, W. R., Martin, K. O. \& Levy, H. A. (1964). ORFFE, A Fortran Crystallographic Function and Error Program. USAEC Report ORNL-TM-306.
Cromer, D. T. \& Waber, J. T. (1965). Acta Cryst. 18, 104.
Frimrichsons, J. \& Mathieson, A. McL. (1962). Acta Cryst. 15, 119.
Frueh, A. J. (1953). Acta Cryst. 6, 454.
Gabe, E. J. (1962). Acta Cryst. 15, 759.
International Tables for X-ray Crystallography (1962). Vol. III. Birmingham: Kynoch Press.

Jeffrey, G. A., Rosenstein, R. D. \& Vlasse, M. (1967). Acta Cryst. 22, 725.
Kalyan, V., Manohar, H. \& Mani, N. V. (1967). Acta Cryst. 23, 272.
Kalyani, V. \& Vidayan, M. (1969). Acta Cryst. B25, 252.

Kannan, K. K., Vijayan, M. \& Nambudiri, M. M. G. (1966). A Unified Set of Crystallographic Programs. Bangalore: Indian Institute of Science. Unpublished.
Karle, I. \& Karle, J. (1966). Acta Cryst. 20, 555.
Kim, S. H., Jeffrey, G. A., Rosenstein, R. D. \& Corfield, P. W. R. (1967). Acta Cryst. 22, 733.

Kitaigorodski, A. I. (1955). Organic Chemical Crystallography. New York: Consultants Bureau.
Manohar, H., Kalyan, V., Bhat, M. V. \& Kamath, K. M. (1966). Tetrahedron Letters, 44, 5413

Phillips, D. C. (1954). Acta Cryst. 7, 746.
Przybylska, M. \& Ahmed, F. R. (1958). Acta Cryst. 11, 718.

Effect of a Badly Misplaced Atom on the Residual

By A.J.C. Wilson
School of Physics, Georgia Institute of Technology, Atlanta, Georgia 30332, U.S.A. and Department of Physics, University of Birmingham, P. O. Box 363, Birmingham 15, England*

(Received 24 June 1968 and in revised form 4 September 1968)
The effect of an entirely misplaced atom in $P 1$ (or two equivalent atoms in $P \overline{1}$) is to give residuals of approximately the following values:

$$
\begin{array}{lcc}
& P 1 & P \overline{1} \\
\left.\left.R=\langle |\left|F_{\text {wrong }}\right|-\left|F_{\text {right }}\right|\right\rangle\right\rangle /\langle | F| \rangle & 16 f / \pi^{5 / 2} \sum^{1 / 2} & 8 / 2 f / \pi^{3 / 2} \sum^{1 / 2} \\
R_{1}=\langle | I_{\text {wrong }}-I_{\text {right }}| \rangle\langle\langle I\rangle & 8 f / \pi^{3 / 2} \Sigma^{1 / 2} & 32 \sqrt{2 f / \pi^{5 / 2} \sum^{1 / 2}} \\
R_{2}=\left\langle\left(I_{\text {wrong }}-I_{\text {right }}\right)^{2}\right\rangle\left\langle\left\langle I^{2}\right\rangle\right. & 2 f^{2} / \Sigma & 16 f^{2} / 3 \Sigma
\end{array}
$$

where f is the scattering factor of the misplaced atom and Σ is the sum of the squares of the scattering factors of all the atoms. These values seem too big to be overlooked unless the total number of atoms is very large.

1. Introduction

In connexion with the refinement of one of the structures of the apatite group, the question arose of the size of the residual to be expected if one atom were entirely misplaced, and the following calculations were therefore undertaken. Three disagreement indices or residuals are in common use, R based on the difference of the moduli of the structure factors, R_{1} based on the difference of the squares of the moduli, and R_{2} based on the square of the difference of the squares. The last, being effectively the variance of $|F|^{2}$, is considerably simpler to manipulate theoretically than are the other two, and the three residuals are, therefore, treated in reverse order below.

[^1]The calculations depend on averaging the difference between quantities calculated with the atom in the wrong place and similar quantities calculated with the atom in the right place. The vector difference between two atomic positions that can be regarded as a complete misplacement is, of course, a function of the Bragg angle, or more accurately of the scattering vector. If the 'right' position of the atom is \mathbf{r}_{0} and its assumed position is \mathbf{r}, the difference in phase between their contributions to the reflexion with scattering vector \mathbf{S} is $2 \pi \mathbf{S} .\left(\mathbf{r}_{0}-\mathbf{r}\right)$. For the calculations to proceed smoothly it is necessary for this phase difference to change by at least 2π as \mathbf{S} takes on all orientations, so that an atom is entirely misplaced only if its distance from its correct position is larger than the reciprocal of the magnitude of the scattering vector. For the lowest-angle reflexions, therefore, the displacement

[^0]: * Present address: Chemical Crystallography Laboratory, South Parks Road, Oxford, England.

[^1]: * Permanent address.

